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LE'lTER TO THE EDITOR 

Fluctuations and overlap distributions in the kinetics of 
first-order phase transitions 
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Centre for the Physics of Materials, Physics Department, Rutherford Building, 
McGill University, 3600 rue University, Mantr&al, QuLbec, Canada H3A ZT8 

Received 9 lune 1992, in final form 26 Augu~t 1992 

Abnrad. w e  introduce anaiogies between iarge Buctuations in the scaiing regime oi the 
kinetics o f  lint-order transitions, and equilibrium fluctuations in systems with quenched 
disorder such as spin glasses. The sensitive dependence on initial conditions in the former 
problem is treated by us in the same manner as quenched disorder in the latter case. We 
calculate time-dppendent overlap functions, which we find are directly related to the order 
parameter for the transition, and suggest methods to test our rewits erpcrimentally. 

In a first-order phase transition, the macroscopic order parameter changes discon- 
tinuously from an initial to a final equilibrium value. The dynamical process by which 
this occurs has been extensively studied recently [l]. Herein, we shall be concerned 
with the kinetics of a system prepared in an unstable state by rapid cooling from a 
high-temperature disordered state to a low temperature T where it is ordered in 
equilibrium. Small domains of the ordered phase form and then grow to macroscopic 
size gs iime increases, y"e jiZr: 'q of ihese :omains 
for late times. For systems whose dynamics is non-conserved, such as binary alloys 
undergoing an order-disorder transition, n = f ,  while for systems whose dynamics is 
controlled by a conserved mode, such as a binary alloy undergoing phase separation 
by spinodal decomposition, n = f. These correspond to the dynamical universality 
classes of models A and B, respectively [l]. 

The existence of this diverging length implies scaling in the problem: the system 
is approximately invariant on changing length and time scales in an appropriate way 
determined by the growth law. This is shown in figure 1 for configurations from a 
simulation of a spin-flip kinetic king model (model A). Thus, for example, the 
correlation function of the local order parameter #(x, f )  obeys (+(x, t )+ (x ' ,  1 ) ) -  
G(lx-x'I/t"), for late times. A convenient definition of the amount of order l+l in the 
system is l+l =(m2)'/', where m dx # ( x ) / t d ,  Ld is the volume of the d-dimensional 

initial conditions). It is evident from the scaling relation for the correlation function 
that I+I- tnd"/Ld/*.  Thus scaling and the growth exponent probe the manner in which 
I#l changes from 0 to a number of order 1. Furthermore, the hydrodynamic limit, 
L+ m, t + m, must be taken with care since 0 < 1$1< 1, i.e. is of order unity, in the 
scaling regime. 

in iime i foiiow.ing 3 I 
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Figure 1. Configurations from a simulation of a 128' kinetic lsingmodel with non-conserved 
order parameter at T=O. Left column: the full system a1 the times indicated (in M C S ) .  
Right column: magnification by a factor of 2 of the central 64' p a n  of the system at the 
times indicated, which are a factor of 4 smaller than in the left column. For this choice of 
time and length scaling factors, the qualitative similarity between left and right columns 
is evident. 

In this letter, we discuss the fluctuations around this late-time growth. These 
fluctuations are evident even in the configurations of figure 1. Although similar, the 
original and rescaled configurations differ in the shape and location of the domains, 
so that they are the same only in an average sense. Similar differences appear between 
configurations evolving from different initial conditions. We will show that these large 
fluctuations can be usefully described using the language developed to study systems 
with quenched disorder, such as spin glasses, and other systems with broken ergodicity. 
We further suggest ways to experimentally probe these phenomena. 

That fluctuations are not small [2,3] can be seen by invoking the law of large 
numbers: consider a system of volume Ld, which can be partitioned into a large number 
N of independent subsystems. If X is an extensive quantity, then although (X) = O( N), 
the quantity SX = X -(X) has different properties: ( ( S X ) 2 ) ' / 2 / ( X )  =0(l/N)"2. The 
number of independent parts in the growing system is N =  ( L / R ( t ) ) ' ,  so we find that 
the relative fluctuations obey 

( ( S X ) ~ ) ' I ~ / ( X )  = 0(r"/L)d/2-I$(. (1) 
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The natural interpretation of this result is as a Ginzburg criterion for the scaling regime 
141: fluctuations are not small in this regime, where O < l $ l  c 1, and there is no upper 
critical dimension in which those fluctuations become small. 

Noise from the initial conditions is amplified by the long-wavelength instability 
causing domain growth, unlike the thermal noise in the quenched state which will be 
irrelevant as soon as domains have grown much larger than the thermal correlation 
length. At that time the zero-temperature fixed point [ 5 ]  begins to control the dynamics, 
the iniiiai siages having been coniroiied by the infinite-temperature fixed poini. Tlie 
state of the system then acts as an effective initial condition determining the subsequent, 
essentially deterministic, evolution. This argument can be formalized by considering 
a Ginzburg-Landau model of the dynamics of phase transitions [ 13. At early times, 
when the state of the system is still close to the high-temperature initial condition, we 
can safely linearize the equation of motion around $(x, I) = 0.  The resulting equation, 
written in Fourier space [k}, reads: 

where q(k ,  1) is a normalized white noise giving the thermal fluctuations in the quenched 
state.Atypicalexpressionfor ykis (kZ)"(qf-k2), where LI =O(or 1) foranon-conserved 
(or conserved) order parameter. The solution of equation (2) can be written as 

where an efectiue initial condition $(k, 1,) has been introduced in terms of the initial 
condition $(k, t = 0): 

The validity of these linear expressions breaks down when the nonlinear terms in 
the original Ginzburg-Landau equation are no longer negligible. This happens [4,6] 
at r,,==ln ~-'/2y.+ where yb is the maximum of yh. It is clear from equation (3) that 
choosing y;I<< f o < t N L ,  with k in the range of interest, the thermal-noise term will 
have no effect on the deterministic evolution of g(k, to). By the range of interest of k 
we mean the modes sufficiently developed at I,,, that is, those with a positive and 
not too small yh. They will dominate the late linear and the early nonlinear regime. 
In the fully nonlinear regime, the influence of thermal noise should be still smaller. 
For the models above, values of 1, satisfying these inequalities can be found for small 
noise if q t  is not too small, that is, if the thermal correlation length c - I / q ,  at  the 
final temperature is much smaller than the system size. The picture which emerges is 
that thermal noise modifies the initial condition $(SO)  during a time of order y;', 
building up the effective initial condition $(k ,  I,). This effective initial condition is not 
further modified by noise in a significant way, but is amplified by the instability. 

The implication of this is that thermal noise becomes less important as time goes 
on, whereas noise in the initial conditions is amplified by the instability. Thus, different 
realizations of the initial conditions give rise t o  many macroscopic dynamical states 
which are not 'close', i.e. they are not mixed by small thermal fluctuations. One can 
give a simple estimate of the number of such dynamical states for 1 > I,. Say there are 
two stable phases and N +  and N -  are the number of domains of each one at time I 
when domains have grown to a size R = R (  I). The total number of domains is 
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N - O ( L / R ) ' .  Using N-(m2)-'wefindthat N*-(N/Z)(l*NN-'/2). Thusthenumber 
of states at time t is approximately, 

x- 

which is initially large, becoming smaller during the evolution. The existence of a large 
number of states which cannot be reached by thermal fluctuations is reminiscent of 
glassy systems. This suggests it would be useful to analyse the fluctuations in the scaling 
regime using the formalism developed to study systems such as spin glasses and other 
systems with broken ergodicity. It is worth noting that our analysis is greatly facilitated 
by the fact that dynamical scaling here is controlled by a zero-temperature fixed point. 
Thus, for the most part, we need only establish our results at T=O, since finite- 
temperature corrections involve the non-diverging thermal correlation length 6. 

In broken-ereodicity systems [7]; any possible equilibrium probability measure p 
can be decomposed into a convex sum of pure states p. : 

P = z P.P. CP. = 1 O ~ p a S 1 .  ( 6 )  
II a 

One of the most important properties characterizing the pure states is the cluster 
property. A way of formulating it is through the vanishing of all the connected 
correlation functions at long distances. The explicit condition for the two-point con- 
nected function C. = (m2).  -(&, in a finite system is C, =O.  The notation (. . .),, means 
a thermal average with measure pa. The analogy with the dynamics of phase transitions 
follows by identifying p. with the probability measure of the state of the system +(x, t )  
at time t for a given initial condition (labelled by a ) .  This measure describes the effect 
of thermal fluctuations on a given initial condition. By identifying pa in equation (6) 

statement that the complete ensemble average is the combination of thermal and 
initial-condition average. 

The arguments after equation (3) imply that a cluster property must be valid for 
times larger than to,  so that at any t > to. the system is in one of the disjoint pure states 
corresponding to a particular eflectiue initial condition in equation (4). In the present 
context, the cluster property is obviously true for T = 0, and we have explicitly checked 
its validity at T >  0 by computer simulation of the two-dimensional spin-flip kinetic 
king model (model A). An initial condition was generated from an infinite temperature 
ensemble, and evolved at T =  OST. until a time to. Then a number N. of independent 
thermal evolutions were calculated from this effective initial condition to obtain Ca. 
The process was repeated No times to estimate the average over initial conditions 

t. Results for a 12a2 square lattice are shown in figure 2. A small field was applied 
to the spins at the boundaries to  avoid the possibility of spontaneous transitions 
between the two final equilibrium states. This possibility disappears in an infinite 
system but can introduce spurious contributions to C,, in finite systems. As shown in 
figure 2, the maximum value of is only a few percent of the final value of the 
magnetization, thus confirming the cluster property. This result persisted for all the 
system sizes and times to considered ( to  from a fraction to a few Monte Carlo steps 
(MCS) and systems of size from 3Z2 to 12a2 sites). The late-time tail of vanished 
with system size as C2, as expected for two-dimensional equilibrium connected 

With the pr&&i!i!y of 2 part..-!ar i&ia! cnn&!inn a, cqsa!iGn ( 6 )  is $i=.p!y !hp 

t The average over initial conditions will be denoted by an ovcrbar 
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Figure 2. Average connected correlation function for a 128' king system. T = 0.5 T,, 
to = 1 MCS, N. = 32, and N. = 10. The average (over thermal histories and initial conditions) 
squared magnetization (m(t)') is also shown for comparison. 

functions, hut the zone around the maximum showed a much weaker dependence on 
system size. Quantification of this dependence will be presented elsewhere. 

After showing the splitting of the set of possible states of the system into separate 
components, we now proceed to the characterization of such splitting. A fundamental 
quantity which has proven useful in the study of spin glasses [8] and other systems 
with broken ergodicity 191 is the ooerlap between different states. The natural definition 
of overlap in the present context is the following 

J - J  

It is a random variable depending on the particular pair (a, b) of initial conditions 
considered. 

The overlap distribution, P ( q ,  t ) =  6(q  - q Q b ( t ) ) ,  describes the nature of the 
ensemble of pure states. The average is over all the pairs of independent initial 
conditions. The form of P(q, I) gives the following information [S, 91: when it consists 
of a delta function at zero value of the overlap, no particular decomposition of phase 
space occurs and the system is disordered, while when it consists of delta functions 
at values of the overlap related by a symmetry of the system, it describes a situation 
of broken symmetry. However, if it gives weight to a continuum of values of the 
overiap, it represents a giassy decomposition of phase space, impiying the existence 
of a very large number of macroscopically different states unrelated by symmetry. 

As is the case for spin glasses, the definition equation (7) is inconvenient for 
computational purposes. A preferable expression would be 

dx$"(x, t ) $ b ( ~ ,  t ) ,  

In this second expression, $"(q I) and Jlb(x,  I) are the values of the order parameter 
at time t, starting from the initial condition a and b, respectively. so that qmb is a 
random variable depending on the particular pair of initial conditions and their 
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respective thermal histories. The question of whenever the statistical properties of 
equation (7) are the same as those of equation (8) is trivial at T = 0. As mentioned 
above, this should be sufficient since the dynamics is controlled by a zero-temperature 
fixed point. In any case, for other temperatures we can follow Parisi's demonstration 
[lo] of the equivalence of both quantities. What is needed for such a demonstration 
is precisely the cluster property, checked explicitly in figure 2 for the two-point case. 

Histograms estimating the distribution P(q,  1 )  from our computer simulations are 
shown in figure 3. It evolves from a delta function on q = 0 for t = 0, corresponding 
to the disordered initial ensemble, to the final form consisting of delta functions at 
the values of the equilibrium square magnetization (for our boundary conditions, only 
one such value exists). Between this initial and final state, P(q ,  t )  is non-trivial, its 
width describing the diversity of non-equivalent possible evolutions. In the initial stages 
of the broadening, the system consists of a large number of independent domains, so 
that we can apply the law of large numbers to (S), showing that P(q,  t )  is a Gaussian 
distribution. This Gaussian form is lost when the number of domains in the system 
begins to significantly decrease. We note that the moments of 4"' can be expressed in 
terms of m-point order parameter correlation functions in the following way: 

The averages are over thermal noise and initial conditions. In the scaling regime, before 
boundary conditions become important, we can use the scaling behaviour of the 
correlation function to show that ( (qab( t ) ) ' )=  tnd /Ld  -l$1*. A more general result is 
( (q"'(r))")- IJI I '"- ' ) .  Thus we find that the overlap function is directly and naturally 
related to the order parameter for the first-order phase transition. 

We have studied other boundary conditions numerically and analyticallyt, 
confirming that the results presented here are independent of those boundary condi- 
tions. These results will be reported elsewhere. What is important for our conclusions 
is that the overlap distribution is always broad, as in the case of spin glasses. For 

...... t= O M C S  

. . . . .  t= BO MCS 

.-- t= 350 MCS 
- t=1750 MCS 

t=3500 NCS 

9 
Figure 3. Overlap distribution functions obtained from 640 pairs of independent quenches 
to T =  0.5T. of a 128' ising system. 

- 
t The analytic calculations have been performed using the methods or[ l l ]  
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periodic boundary conditions, there are additional contributions to the width of the 
overlap distribution from a fraction of runs which end up in slab states, where one 
phase forms a stripe stretching across the entire system [12]. We have avoided those 
states here by applying an infinitesimal field a t  the boundaries, and plan to study them 
in a future publication. 

An experimental test of our predictions can be made using a novel scattering method 
of Sutton el a1 [13] using coherent hard x-rays. They observed speckle patterns from 
the random interconnected structure ofCu,-Au during the kinetics of an order-disorder 
transition. We propose the following. By irradiating the material with two coherent 
x-ray beams, the interference between radiation coming from the two illuminated 
regions can be analysed. If those regions are separated by a distance much larger 
than the domain size, one can show that the probability distribution of the quantity 
j dk(1.b-I. - 1b)/2 is precisely P(q ,  t ) .  r& I), ~ ~ ( k ,  I), and lob(k ,  t )  are the scattered 
intensities at angle k when only region a, only region b, or both regions, respect- 
ively, are illuminated. Such an experimental measurement of P(q, I) would be of a 
great deal of interest. 

Finally, while our investigation has focused on the kinetics of first-order transitions, 
we speculate that our results have more general applicability: we expect that three 
critieria, random initial conditions, a long-wavelength instability, and scaling controlled 
hy a zero-!emperature fixed p i n t ,  imply g!zsry behzviour 1" re!a!er! prob!emr, such 
as crystal growth [14]. It is also worth mentioning that since scaling and fluctuations 
here are controlled by attractive fixed points, and that those fluctuations are analogous 
to those of systems with quenched disorder, the kinetics of first-order transitions 
provides an example of some of the ideas concerning self-organized criticality [15]. 
Unlike self-organized criticality, however, scaling in domain-growth kinetics is thought 
to involve no upper critical dimension, with exponents determined by engineering 
dimensions. 
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